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Abstract: Temporally stable coherent states are discussed for an abstract Hamil-
tonian with a general spectrum. Statistical quantities related to the coherent states
are calculated. As special cases of the construction, coherent states for some well-known
Hamiltonians, namely; Harmonic oscillator, Isotonic oscillator, pseudoharmonic oscillator,
Infinite well potential, Pöschl-Teller potential, Eckart potential are indicated. Quaternion
version of temporally stable coherent states is also worked out.
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1. Introduction

Following the method proposed by Gazeau and Klauder [6] to construct temporally
stable coherent states, CS for short, in recent years, several classes of CS were constructed
for quantum Hamiltonians [2],[5],[12]. The spectrum E(n) of several solvable quantum
Hamiltonians is a polynomial of the label n. In this letter, we discuss CS with a general
polynomial E(n),

E(n) = akn
k + ak−1n

k−1 + · · ·+ a1n+ a0,

of degree k, which is considered as the spectrum of an abstract Hamiltonian. As special
cases of our construction we obtain CS for the quantum Hamiltonians indicated in the
abstract.

2. Gazeau-Klauder coherent states

Let us introduce the general features of Gazeau-Klauder CS. Let H be a Hamiltonian
with a bounded below discrete spectrum {en}∞n=0 and it has been adjusted so that H ≥ 0.
Further assume that the eigenvalues en are non-degenerate and arranged in increasing
order, e0 < e1 < ... For such a Hamiltonian, the so-called Gazeau-Klauder coherent states
(GKCS for short) are defined as

(2.1) | J, α〉 = N (J)−1
∞∑
n=0

Jn/2√
κ(n)

e−ienαηn

where J ≥ 0, −∞ ≤ α ≤ ∞, {ηn}∞n=0 is the set of eigenfunctions of the Hamiltonian
and κ(n) = e1e2 . . . en = en!. In order to be GKCS the states (2.1) need to satisfy the
following:

(a) For each J, α the state is normalized, i.e., 〈J, α | J, α〉 = 1;
(b) The set of states {| J, α〉 : J ∈ [0,∞), α ∈ (−∞,∞)} satisfies a resolution of the

identity ∫ ∞
0

∫ ∞
−∞
| J, α〉〈J, α | dµ(J, α) = I

where dµ(J, α) is an appropriate measure.
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(c) The states are temporally stable, i.e., e−iHt | J, α〉 =| J, α+ t〉;
(d) The states satisfy the action identity, i.e., 〈J, α | H | J, α〉 = J .

The condition (d) requires e0 = 0. In the case where only the conditions (a)-(c) are
satisfied the resulting CS may be phrased as “temporally stable CS”.

2.1. Abstract approach. In this section, we manipulate GKCS of type (2.1) in a some-
what abstract way. For this recall the basic definition of the canonical CS [1]:

(2.2) | z〉 = e−r
2/2

∞∑
n=0

zn√
n!
| n〉

where z ∈ C, the complex plane and {| n〉}∞n=0 is the Fock space basis. As a generalization
of (2.2) the so-called non-linear CS are defined [10] by

(2.3) | z〉 = N (|z|)−1
∞∑
n=0

zn√
xn!

ξn

where z ∈ D, an open subset of C, N (|z|) is the normalization factor, {ξn}∞n=0 is an
orthonormal basis of an abstract separable Hilbert space H, x1, x2, ... a sequence of positive
real numbers, xn! = x1...xn, the generalized factorial and, by convention, x0 = 0, x0! =
0! = 1 (notice that in (2.3) it is custom to take N (|z|)−1/2 and x0! = 1, but to be
consistent with [6] we take N (|z|)−1 and x0 = 0). If xn! is given by ρ(n), a positive real
number xn can be obtained as follows:

(2.4) xn =
ρ(n)

ρ(n− 1)
, for n = 1, 2, 3, . . .

Then

(2.5) ρ(n) = xnxn−1 . . . x1 = xn!,

and ρ(0) = x0! := 0! = 1 . The generalized annihilation, creation and number operators
defined on the Hilbert space H with respect to the basis {ξn} can be given by (see [1])

aξn =
√
xnξn−1, with aξ0 = 0,

a†ξn =
√
xn+1ξn+1,(2.6)

nξn = xnξn, (n = a†a)

and the commutators take the form[
a, a†

]
ξn = (xn+1 − xn)ξn,[

n, a†
]
ξn = (xn+1 − xn)a†ξn,(2.7)

[n, a] ξn = (xn−1 − xn)aξn.

The annihilation operator satisfies the usual relation a | z〉 = z | z〉. Under the commuta-
tor bracket, these three operators generate a Lie algebra which is the so-called generalized
oscillator algebra. Since n = a†a and

nξn = xnξn,

we can consider n as a Hamiltonian, {xn}∞n=0 as its non-degenerate spectrum and {ξn}∞n=0

as its eigenfunctions. Further, if x0 < x1 < x2 < ... then in analogy to the GK construc-
tion we can have GKCS. That is,

(2.8) | J, α〉 = N (J)−1
∞∑
n=0

Jn/2√
xn!

e−ixnαξn
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It is straightforward to verify that the states in (2.8) are temporally stable under the
action of the time evolution operator

U(t) = e−int

and since x0 = 0 we have the action identity,

〈J, α | n | J, α〉 = J.

Thus the states (2.8) form a class of GKCS if the states are normalized, i.e.,

〈J, α | J, α〉 = 1,

which is guaranteed if

(2.9) N (J)2 =

∞∑
n=0

Jn

xn!
<∞,

where the radius of convergence of the series is R = limn→∞ n
√
xn, and provide a resolution

of the identity, i.e.,

(2.10)

∫ R

0

∫
| J, α〉〈J, α | Ξ(J)dJdα = I,

where Ξ(J) = N (J)2λ(J) is a density function and λ(J) is an auxiliary density. Further,
the integral on α is defined by∫

...dα = lim
δ→∞

1

2δ

∫ δ

−δ
...dα.

Notice that,∫
e−iα(xn−xl)dα = lim

δ→∞

1

2δ

∫ δ

−δ
e−iα(xn−xl)dα =

{
0 if xn 6= xl
1 if xn = xl

By a straightforward calculation one can see that the identity (2.10) is satisfied if one has,

(2.11)

∫ R

0

Jnλ(J)dJ = xn!

Further it may be interesting to notice that the algebra generated by the operators
{a, a†, n} and its deformations (up to isomorphisms) can serve as a dynamical algebra
of the Hamiltonian n.
In the case where one knows the spectrum and the eigenfunctions of a Hamiltonian, the
projective representation of the Hamiltonian can be written. For the states (2.8) it can
be written as

(2.12) H =

∞∑
n=0

xn | ξn〉〈ξn | .

For this Hamiltonian we have Hξn = xnξn; ∀n ≥ 0.

2.2. GKCS quaternionic extension. Here we present quaternionic extension of GKCS
as vector coherent states on an abstract separable Hilbert space tensored with C2. Even
though possible physical applications of these CS may be worked out for the systems
presented in [15, 3], we shall not touch them in this manuscript. Further, it might be of
interest to carry out the following procedure on a separable abstract left or right quater-
nionic Hilbert space. However, a quaternionic wave function on a quaternionic Hilbert
space has not attained a clear meaning in quantum physics yet. Keeping the above points
in mind let us proceed with the construction.
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Let q be a quaternion and p be a 2×2 Hermitian matrix. We intend to have temporally
stable VCS as follows.

(2.13) | q, αp, j〉 = N (q)−1
∞∑
m=0

qm/2√
ym!

e−iymαpχj ⊗ φm ∈ C2 ⊗ H, j = 1, 2.

where χ1, χ2 is the natural basis of C2, {φn}∞n=0 is an orthonormal basis for the abstract
separable Hilbert space H, and {ym} is a positive sequence of real numbers with y0 <
y1 < y2.... Further a remark is in order: A quaternion has many square roots, in order
to be unique with the definition of GKCS we need to work with a fixed square root.

2.2.1. Normalization. As in the case of VCS of [15] we normalize the states as

2∑
j=1

〈q, αp, j | q, αp, j〉 = 1.

which requires

2∑
j=1

〈q, αp, j | q, αp, j〉 = N (q)−2
2∑
j=1

∞∑
m=0

〈qm/2e−iymαpχj | qm/2e−iymαpχj〉
ym!

= N (q)−2
∞∑
m=0

Tr[(qm/2e−iymαp)(qm/2e−iymαp)†]

ym!

= N (q)−2
∞∑
m=0

Tr[qm/2(qm/2)†]

ym!

= 2N (q)−2
∞∑
m=0

|q|m

ym!

that is

(2.14) N (q)2 = 2

∞∑
m=0

|q|m

ym!
.

2.2.2. Resolution of the identity. Let D(p) be the domain of variables of p and dp be the
probability measure on it. Observe that∫

D(p)

∫
e−i(ym−yl)αpdαdp =

{
1 if m = l
0 if m 6= l

Let us make the following identification

| · | : H −→ R+ by q 7→ |q| = t,

where H is the quaternion algebra. For a resolution of identity condition, let

dµ(t,p, α) = N (|q|)2λ(t)dtdpdα.
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Then we have

2∑
j=1

∫ ∞
0

∫
D(p)

∫
| q, αp, j〉〈q, αp, j | dµ(t,p, α)

=

2∑
j=1

∞∑
m=0

∞∑
l=0

∫ ∞
0

∫
D(p)

∫
1√
ym!yl!

| qm/2e−iαympχj〉〈ql/2e−iαylpχj |

⊗ | φm〉〈φl | λ(t)dtdpdα

=

2∑
j=1

∞∑
m=0

∞∑
l=0

∫ ∞
0

∫
D(p)

∫
1√
ym!yl!

qm/2e−iαymp | χj〉〈χj | (ql/2e−iαylp)†

⊗ | φm〉〈φl | λ(t)dtdpdα

=

∞∑
m=0

∞∑
l=0

∫ ∞
0

∫
D(p)

∫
1√
ym!yl!

qm/2e−iαymp(ql/2e−iαylp)†⊗ | φm〉〈φl | λ(t)dtdpdα

=

∞∑
m=0

∞∑
l=0

∫ ∞
0

∫
D(p)

∫
1√
ym!yl!

qm/2e−iα(ym−yl)p(ql/2)†⊗ | φm〉〈φl | λ(t)dtdpdα

=

∞∑
m=0

∫ ∞
0

|q|m

ym!
In⊗ | φm〉〈φm | λ(t)dt

=

∞∑
m=0

∫ ∞
0

tm

ym!
In⊗ | φm〉〈φm | λ(t)dt = In ⊗ I

provided that

(2.15)

∫ ∞
0

tmλ(t)dt = ym!

2.2.3. Temporal stability. As in [15], we define the operators

A = I2 ⊗ a, A† = I2 ⊗ a†, N = I2 ⊗ n.

Since

Nχj ⊗ φm = ymχ
j ⊗ φm

χj ⊗ φm can be considered as an eigenfunction of N with the spectrum ym. In other
words, N can be considered as a matrix Hamiltonian. Then

U(τ) = e−iτN

is the time evolution operator. Since

U(τ)χj ⊗ φm = e−iymτI2χj ⊗ φm

we have

U(τ) | q, αp, j〉 =| q, αp + τI2, j〉

Thus the states | q, αp, j〉 are temporally stable or this could be an analogue of the
temporal stability.
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2.2.4. Action identity. Let us see an analogue of the action identity. For the quaternionic
GKCS a meaningful way of defining the action identity may be as follows:

2∑
j=1

〈q, αp, j | N | q, αp, j〉 = |q|,

which can be verified in the following way.

2∑
j=1

〈q, αp, j | N | q, αp, j〉

= N (q)−2
2∑
j=1

∞∑
m=1

1

ym−1!
〈qm/2e−iαympχj | qm/2e−iαympχj〉

= N (q)−2
2∑
j=1

∞∑
m=0

1

ym!
〈q(m+1)/2e−iαym+1pχj | q(m+1)/2e−iαym+1pχj〉

= N (q)−2
∞∑
m=0

1

ym!
Tr[(q(m+1)/2e−iαym+1p)(q(m+1)/2e−iαym+1p)†]

= N (q)−2
∞∑
m=0

1

ym!
Tr[q(m+1)/2(q(m+1)/2)†]

= 2N (q)−2
∞∑
m=0

|q|m+1

ym!
= |q|

2.2.5. Dynamical algebra. If qp = pq and ym+1 = c+ ym, for a constant c, then we can
have

A | q, αp, j〉 = qecαp | q, αp, j〉.

Further the algebra generated by {A,A†,N} can be considered as a dynamical algebra of
the system governed by the Hamiltonian N.

3. GKCS for the spectrum E(n)

In this section we discuss GKCS for a Hamiltonian, in the sense of Section 2.1, with
the spectrum

(3.1) E(n) = akn
k + ak−1n

k−1 + · · ·+ a1n+ a0.

Also note that from (2.14) and (2.15) the following procedure normalizes the quaternionic
GKCS and also give a resolution of the identity with yn = E(n).
Now as we have mentioned earlier, to have the action identity we need to have E(0) = 0.
In the case where this requirement is violated we need to adjust the spectrum as follows
en = E(n)− E(0). In this case we get

en = n(akn
k−1 + ...+ a1).

Let b1, ..., bk−1 be the zeros of the polynomial akn
k−1 + ...+ a1 (not necessarily distinct)

and assume that the zeros are real numbers. Hereby we write

en = bn(n− b1)(n− b2)...(n− bk−1),
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where b is some constant, and

ρ(n) =

n∏
j=1

ej = bnΓ(n+ 1)(α1)n...(αk−1)n

where αj = 1− bj ; j = 1, ..., k − 1 and (α)n = Γ(n+ α)/Γ(α), the Pochhammer symbol.
Let {φn}∞n=0 be an orthonormal basis of an abstract separable Hilbert space, H. Let us
consider the Hamiltonian

H =

∞∑
n=0

en | φn〉〈φn | .

Thereby, en are the eigenvalues of the Hamiltonian H with the eigenfunctions φn. In the
following we construct GKCS for the Hamiltonian H as vectors in the state Hilbert space
H of H. Let us define a set of states

(3.2) | J, α〉 = N (J)−1
∞∑
n=0

Jn/2√
en!

e−ienαφn ∈ H.

Since e0 = 0 we can easily observe that the states (3.2) are temporally stable under
the time evolution operator U(t) = e−iωHt and the action identity can be seen by a
straightforward calculation. The normalization requirement 〈J, α | J, α〉 = 1 yields

(3.3) N (J)2 =

∞∑
n=0

(J/b)n

Γ(n+ 1)(α1)n...(αk−1)n
= 0Fk−1(−;α1, ..., αk−1; J/b).

Since limn→∞ en = ∞ the series (3.3) converges for all J ≥ 0. For J ∈ [0,∞) and
−∞ < α < ∞, from (2.10) and (2.11) we see that a resolution of identity holds if there
exists a density λ(J) satifying

(3.4)

∫ ∞
0

Jnλ(J)dJ = bnΓ(n+ 1)(α1)n...(αk−1)n.

From the Mellin transform (see [9], p. 303, formula (37))
(3.5)∫ ∞

0

xs−1Gq+1,0
p,q+1

(
x| c1 − 1, ..., cp − 1

d1 − 1, ..., dq − 1, 0

)
dx = Γ(s)

Γ(s+ d1 − 1)...Γ(s+ dq − 1)

Γ(s+ c1 − 1)...Γ(s+ cp − 1)
,

where

Gq+1,0
p,q+1

(
x| c1 − 1, ..., cp − 1

d1 − 1, ..., dq − 1, 0

)
is the Meijer-G-function, we conclude that

λ(J) =
1

b
∏k−1
j=1 Γ(αj)

Gk,00,k

(
J/b| −

α1 − 1, ..., αk−1 − 1, 0

)
satisfies (3.4). Thus the states (3.2) form a set of GKCS for the Hamiltonian H.
A dynamical algebra can be defined through the operators of (2.6). In general this algebra
is an infinite dimensional Lie algebra.
Quantum revivals are associated with the wave functions. A revival of a wave function
occurs when a wave function evolves in time to a state closely reproducing its initial form.
Further, the weighting distribution is crucial for understanding the temporal behavior of
the wave function [2]. In the case of the states (3.2), the probability of finding the state
φn in the state | J, α〉 is given by

P (n, J) = |〈φn | J, α〉|2 =
Jn

bnΓ(n+ 1)(α1)n...(αk−1)n0Fk−1(−;α1, ..., αk−1; J)
.
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A quantitative estimate is given by the so-called Mandel parameters,

Q =
〈J, α | n2 | J, α〉 − 〈J, α | n | J, α〉2 − 〈J, α | n | J, α〉

〈J, α | n | J, α〉
where nφn = enφn. If the photon distribution is Poissonian then Q = 0. If Q < 0 it is
called sub-Poissonian and if Q > 0 it is called super-Poissonian [2]. Let us calculate the
Mandel parameter for the states (3.2). Since nφ0 = 0 we have

〈J, α | n | J, α〉 = J

and

〈J, α | n2 | J, α〉 = N (J)−2
∞∑
n=0

Jn+1en+1

en!

= N (J)−2
∞∑
n=0

Jn+1(n+ 1)(ak(n+ 1)k−1 + ...+ a2(n+ 1) + a1)

bnΓ(n+ 1)(α1)n...(αk−1)n
.

Thereby

(3.6) Q = N (J)−2
∞∑
n=0

Jn(n+ 1)(ak(n+ 1)k−1 + ...+ a2(n+ 1) + a1)

bnΓ(n+ 1)(α1)n...(αk−1)n
− J − 1.

Since, for any finite k,

lim
n→∞

n

√
bnΓ(n+ 1)(α1)n...(αk−1)n

(n+ 1)[ak(n+ 1)k−1 + ...+ a2(n+ 1) + a1]
=∞

the series in (3.6) converges for all J ≥ 0. For a state | ψ〉 of the state Hilbert space the
average energy of the system is given by E = 〈ψ | n | ψ〉. For the states (3.2) the average
energy E = J .

4. Examples

In the following we will discuss GKCS for some Hamiltonians as special cases of the
above construction. Most of these results can be found in the literature.
• Harmonic oscillator : The simplest case is the harmonic oscillator Hamiltonian where
en = n and the state Hilbert space is the Fock space. This case is obtained from (3.1) by
taking k = 1, a1 = 1, a0 = 0 and assuming that φn of (3.2) form the Fock space basis.
Further ρ(n) = en! = Γ(n+ 1), N (J)2 = 0F0(−;−; J) = eJ ,

λ(J) = G1,0
0,1

(
J | −

0

)
= e−J

and the Mandel parameter Q = 0.
• Isotonic oscillator : The spectrum of the isotonic oscillator Hamiltonian

H = − d2

dx2
+ x2 +

A

x2
(A ≥ 0)

is En = 2(2n+γ) where γ = 1 + 1
2

√
1 + 4A, thus en = En−E0 = 4n. The eigenfunctions

of H form an orthonormal basis of the Hilbert space L2([0,∞)) [7, 13]. We get the
spectrum by substituting k = 1, a1 = 4, a0 = 2γ in (3.1). In (3.2) we need to take
φn = eigenfunction of H. In this case ρ(n) = 4nΓ(n+ 1), N (J)2 = 0F0(−;−; J/4) = eJ/4

and

λ(J) =
1

4
G1,0

0,1

(
J/4| −

0

)
=

1

4
e−J/4.
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The Mandel parameter Q = 3. Since Q > 0 for all J ≥ 0 the photon distribution is
super-Poissonian.

• Pseudoharmonic oscillator : An anharmonic potential suitable for the treatment of
molecular vibrations is the pseudoharmonic oscillator (PHO)

H = − ~2

2m

d2

dr2
+ Vp(r).

The effective potential of the PHO is

Vp(r) =
mω2

8
r20

(
r

r0
− r0

r

)2

+
~

2m
p(p+ 1)

1

r2

where m is a reduced mass, ω angular frequency, r0 the equilibrium distance between the
nucli of the diatomic molecule and p rotational quantum numbers. Vp(r) can be rewritten
as

Vp(r) =
mω2

8
r2p

(
r

rp
− rp

r

)2

+
mω2

4
(r2p − r20)

where rp is the changed equilibrium distance and it is given by

rp =

[
2~
mω

(β2 − 1

4
)

] 1
2

where β =

[
(p+

1

2
) +

mωr20
2~

] 1
2

.

The radial eigenfunctions and eigenvalues are given by

Uβn =
1

B

[
B3n!

2βΓ(n+ β + 1)

] 1
2

(Br)β+
1
2 e−B

2r2/4Lβn(B2r2/2),

where Lβn is the generalized Laguerre polynomial, and

Enp = ~ω(n+
1

2
) +

~ωβ
2
− mω2r20

4

where B =
√
mω/~. For β = 2q − 1 the eigenfunctions satisfy 〈n, q | n′, q〉 = δnn′

and
∑∞
m=0 | n, q〉〈n, q |= I. For details see [11]. The spectrum is obtained from (3.1)

with k = 1, a1 = ~ω and a0 = ~ωβ
2 −

mω2r20
4 . In (3.2) we set φn =| n, q〉 and obtain

ρ(n) = ~nωnΓ(n+ 1), N (J)2 = 0F0(−;−; J/(~ω)) = eJ/(~ω) and

λ(J) =
1

4
G1,0

0,1

(
J/(~ω)| −

0

)
=

1

~ω
e−J/(~ω).

The Mandel parameter Q = ~ω − 1. If we rescale ~ and ω such that ~ω = 1 we obtain
the results of the Harmonic oscillator.

• Infinite well : In [2] GKCS were constructed for the infinite well potential

H = − ~
2m

d2

dx2
− ~2

2ma2
.

The eigenfunctions form an orthonormal basis of the Hilbert space H = L2([0, πa], dx)

and the eigenvalues are En = ~2

2ma2n(n + 2) = ~ωn(n + 2) where ω = ~
2ma2 . In [2]

GKCS were considered with en = n(n + 2); n = 0, 1, .... To be compatible with (3.1)
here we take en = En. This case can be viewed as a special case of (3.2) with k =
2, a2 = ~ω, a1 = 2~ω, a0 = 0 and φm = eigenfunction of the infinite well. Here we have
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ρ(n) = ~nωnn!(3)n, N (J)2 = 0F1(−; 3; J
~ω ) = 2~ωI2(2

√
J/(~ω))/J , where Iν(x) is the

modified Bessel function of the second kind,

λ(J) =
1

2~ω
G2,0

0,2

(
J/(~ω)| −

2 0

)
and

Q =
2

y3

[
(J + ~ω)I1(2y) + y(J − ~ω)I0(2y)

0F1(−; 3; y2)

]
− J − 1,

where y =
√
J/(~ω). For ~ = ω = 1 we get

Q =
2
[
(J + 1)I1(2

√
J)−

√
JI0(2

√
J)
]

√
JI0(2

√
J)− I1(2

√
J)

.

When ~ = ω = 1 one can numerically see that Q < 0 for very small values of J and it is
positive for large values of J .
•Pöschl-Teller : In [2] GKCS were also constructed for the Pöschl-Teller potential

H = − ~2

2m

d2

dx2
+
V0
2

(
λ(λ− 1)

cos2 x/2a
+
κ(κ− 1)

sin2 x/2a

)
− ~2

8ma2
(λ+ κ)2, 0 ≤ x ≤ πa

whereV0 = ~2/(4ma2). The nondegenerate spectrum of this Hamiltonian is given by

En = ~2

2ma2n(n + λ + κ) = ~ωen; n = 0, 1, 2, .... The eigenfunctions form an orthonor-

mal basis of the Hilbert space L2([0, πa], dx). In [2] GKCS were constructed for this
Hamiltonian with en = n(n + λ + κ); λ, κ > 1. From (3.2), for the spectrum En,
GKCS can be obtained with k = 2, a2 = ~ω, a1 = ~ω(λ + κ), a0 = 0 and φn =
eigenfunction of the Pöschl-Teller potential. In this case we have ρ(n) = ~nωnn!(1 +
λ+ κ)n,

N (J)2 = 0F1(−; 1 + λ+ κ; J/~ω) =
Iλ+κ(2

√
J/~ω)Γ(1 + λ+ κ)

(
√
J/~ω)λ+κ

,

λ(J) =
1

Γ(1 + λ+ κ)
G2,0

0,2

(
J/(~ω)| −

λ+ κ 0

)
and

Q =
2J

y

Iλ+κ+1(2y)

Iλ+κ(2y)
+ ~ω(λ+ κ+ 1)− 1,

where y =
√
J/~ω. When ~ = ω = 1 we get

Q = 2
√
J
Iλ+κ+1(2

√
J)

Iλ+κ(2
√
J)

+ λ+ κ.

• Eckart potential : For 0 ≤ βx ≤ π and A > B, the energy spectrum of the Eckart
potential,

H = − d2

dx2
−A2 + (A2 +B2 −Aβ)cosec2(βx)−B(2A− β)cot(βx)cosec(βx)

is gicen by En = βn(βn+ 2A); n = 0, 1, 2, ...[4],[8]. This can be compared to (3.1) with

k = 2, a2 = β2, a1 = 2Aβ and a0 = 0. Since ρ(n) = β2nn!(β+2A
β )n the rest of the details

follows from the Pöschl-Teller case with appropriate substitutions.
279



References

[1] Ali S.T., Antoine J.P., Gazeau J.P., Coherent States, Wavelets and Their Generalizations,

Springer, New York (2000).

[2] Antoine J-P., Gazeau J-P., Monceau P., Klauder J.R. and Penson K.A., Temporally stable
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